您现在的位置是: 首页 > 汽车新闻 汽车新闻

多面体欧拉定理的实际应用_多面欧拉

tamoadmin 2024-10-16 人已围观

简介1.请推荐一本初中学生读的数学科普读物2.排列组合的发展历程3.高中数学的选3-5《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。 数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复

1.请推荐一本初中学生读的数学科普读物

2.排列组合的发展历程

3.高中数学的选3-5

多面体欧拉定理的实际应用_多面欧拉

《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。

数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复杂。 张景中院士从中学生熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。

《数学家的眼光》通过一系列中学生熟悉的“简单的问题”,说明数学家是如何从这些普通的、众所周知的事实出发,步步深入、分析和挖掘出有广泛应用的深刻规律。使读者了解数学家做事、看问题的思路和方法。同时显示出数学的深刻、透彻,能够达到一般讨论所不能达到的地步;又展示了数学家的穷追不舍、孜孜以求的探索真理的治学精神。使读者在读来既轻松、又兴味盎然的情景中了解并慢慢学会解决数学问题的思路和方法。

很早就读过张景中先生的文章和书,尤其是他以“井中”为笔名写的文字。但第一次认识张先生是在1989年,当时应四川省数学会之邀到峨眉山为数学奥林匹克教师培训班授课。空余时间听了张先生的一节课,他给小学教师讲“鸡兔同笼”,印象很深,确有“啊哈,灵机一动!”之感,处理方法通俗、绝妙。

张先生的经历很不简单。他是北京大学的高材生、下放新疆时做过中学老师、在中国科技大学教过少年班、担任过数学奥林匹克国家队教练……也许正是他深厚的数学功底加上这份经历,使他成为最了解、最关心中小学数学教育的国内著名数学家之一。张先生现在是中国科学院院士、中国科普作家协会理事长。

他在繁忙的科研工作之余为青少年撰写了大量广受好评的数学科普作品,中国少年儿童出版社出版的“院士数学讲座专辑”应该是他的代表作了。获全国优秀畅销书奖,全国优秀科普作品一等奖,第六届国家图书奖,第九届“五个一工程”奖。2004年又入选首批新闻出版总署向全国青少年推荐的百种优秀图书。

数学家组成一个群体是他们有共同的思维习惯,张先生把这称为“数学家的眼光”,这个提法好,很平等、易于让人接受。数学家与普通人的区别就在于这种看问题的眼光和角度的不同,而不是别的什么。在中小学开设数学课的目的之一,就是为学生提供一个了解、体会数学家眼光的机会和环境,教师们应切实地意识到这一点。

《数学家的眼光》通过一系列中学生熟悉的“简单的问题”,说明数学家是如何从这些普通的、众所周知的事实出发,步步深入、分析和挖掘出有广泛应用的深刻规律。使读者了解数学家做事、看问题的思路和方法。同时显示出数学的深刻、透彻,能够达到一般讨论所不能达到的地步;又展示了数学家的穷追不舍、孜孜以求的探索真理的治学精神。使读者在读来既轻松、又兴味盎然的情景中了解并慢慢学会解决数学问题的思路和方法。

张先生一直站在科学研究的前沿,为建立“几何定理机器可读性证明的理论”做着出色的工作。可贵的是他善于把他在研究工作中的思想、方法通俗、形象地介绍出来,传达给更多的人。几何定理机器证明的理论基础是“消点法”,说得再简单些就是面积。几何大厦是由一个个漂亮的小屋组成,欧几里德选了一个入口、选了一种路径走遍了每一个小屋。在《新概念几何》中,张先生试图带着大家另选一个入口、另辟蹊径地走一走、逛一逛。

从他的作品中,可以看出张先生对平面几何的情有独钟,可以看出他在整理几何体系时的独到见解。20年前,张先生就提出用“面积方法”处理平面几何问题,现在这套办法已经被很多中学老师和同学掌握,在解决数学奥林匹克问题时的优势尤为明显。平面几何在人的理性思维训练上的意义是独特的,这有点像体育项目中的体能训练。乒乓球运动员是要反复练习发球、接球、削球、抽球这些实用的基本功,但是也要拿出相当多的时间花在练习举重、跑步、耐力等不那么“立竿见影”有用的功夫上,只有有了好的身体素质,才能发挥水平、打好比赛。

应该衷心地感谢张先生的书、感谢他为数学科普所做的工作。也真的希望更多的“张景中”关心、支持、实践这件事,在中国出现几个马丁·加德纳式的人物!

其它:

书名:《离散数学(上)》

清华大学计算机系的教材

离散数学(discrete mathematics)是计算机科学基础理论的核心课程。它包括数理逻辑、集合论、代数结构、图论、形式语言、自动机和计算集合等。

第一章 命题逻辑的基本概念

第一节 命题

一、什么是命题

命题是一个非真即假的陈述句。

1)命题是一个陈述句。

2)该陈述句表达的内容非真即假。

我们把这样的命题逻辑成为二值逻辑,把以这样命题作为研究对象的逻辑成为古典逻辑。

二、命题变量

我们约定用大写字母表示命题,用小写字母表示命题变量。命题是指具体的陈述句,是有确定的真值;而命题变量的真值不定,只当将某个具体命题代入命题变量时,命题变量化为命题,方可确定其真值。

三、简单命题和复合命题

不能分解成更简单的命题的组合的命题称为简单命题。它又称原子命题,它是不包含任何的与、或、非一类联结词的命题。

把一个或者几个简单命题用联结词(如与、或、非联结所构成的命题称为复合命题,也称为分子命题。

第二节 命题联结词及真值表

联结词分为两类:

1)真值联结词,由此联结词构成的复合命题的真假完全由构成它的简单命题的真假决定。

2)非真值联结词,由此联结词构成的复合命题的真假不完全由构成它的简单命题的真假来确定。

一、否定词 ┑

否定词“┑”是个一元联结词。一个命题P加上否定词就构成了一个新的命题。记作 ┑P,这个新命题是命题P的否定,读作 非P

命题P与命题非P的真假是互异的。

二、合取词 ∧

合取词“∧”是个二元命题联结词。合取词将两个命题P、Q联结起来,构成一个新命题P∧Q,读作P、Q的合取,也可读作P与Q。其中P、Q可以是简单命题,也可以是复合命题。

只有P、Q都为真时,P与Q才为真,否则为假。

即:

P=T

Q=T

P∧Q=T

三、析取词 ∨

析取词“∨”是个二元命题联结词,将两个命题P、Q联结起来,构成一个新命题P∨Q,读作P、Q的析取,也读作P或Q.

只有P、Q都为假(F)时,P∨Q才为假,否则P∨Q为真。

即:

P=F

Q=F

P∨Q=F

四、蕴涵词 →

蕴涵词“→”也是个二元命题联结词,将两个命题P、Q联结起来,构成一个新命题P→Q,读作如果P则Q,或读作P蕴涵Q,如果P那么Q。其中P称前件(前项,条件),Q称后件(后项,结论)。

规定只有当P为真而Q为假时,P→Q=F,否则P→Q=T

即:

P=T

Q=F

P→Q=F

P→Q=T下,若P=T必有Q=T,这表明P→Q体现了P是Q成立的充分条件。

P→Q下,若P=F可有Q=T,这表明P→Q体现了P不必是Q成立的必要条件。

P→Q的真值表

P Q P→Q

F F T

F T T

T F F

T T T

┑P∨Q的真值表

P Q ┑P∨Q

F F T

F T T

T F F

T T T

在P、Q的所有取值下,P→Q同┑P∨Q都有相同的真值

即:P→Q=┑P∨Q

真值相同的等值命题以等号联结。这说明→可由┑、∨来表示,从逻辑上看“如果P则Q”同“非P或Q”是等同的两个命题。

五、双条件词 =

双条件词“=”(有的书中用的是双箭头号表示)同样是个二元命题联结词,将两个命题P、Q联结起来构成新命题P=Q,读作P当且仅当Q或P等值Q.

只有当两个命题P、Q的真值相同时,P=Q的真值方为T

P=Q的真值表

P Q P=Q

F F T

F T F

T F F

T T T

第三节 合式公式(简称为公式)

合式公式定义:

1.简单命题是合式公式

2.如果A是合式公式,那么┑A也是合式公式

3.如果A、B是合式公式,那么(A∧B)、(A∨B)、(A→B)、(A=B) 也是合式公式

4.当且仅当经过有限次地使用1,2,3所组成的符号串才是合式公式。

约定联结词按┑、∨、∧、→、=的排列次序安排优先的级别。

第四节 重言式

一、定义

命题公式中有一类重言式,如果一个公式,对于它的任一解释I其真值都为真,就称其为重言式(永真式)。如P∨┑P是重言式。

显然,由∨、∧、→、=联结的重言式仍是重言式。

一个公式,如有某个解释I0,在I0下该公式真值为真,则称其是可满足的。

如果一个公式,对于它的任一解释I其真值都为假,就称其为永假式(矛盾式)或不可满足的。如P∧┑P就是矛盾式

这三类公式的关系:

1.公式A永真,当且仅当┑A永假

2.公式A可满足,当且仅当┑A非永真

3.不是可满足的公式必永假

4.不是永假的公式必可满足

二、代入规则

A是一个公式,对A使用代入规则得公式B,若A是重言式,则B也是重言式。

为保证重言式经代入规则仍得到保存,要求:

1.公式中被代换的只能是原子命题,而不能是复合命题。

2.对公式中某命题变项施以代入,必须对该公式中出现的所有同一命题变项代换同一公式。

第五节 简单自然语句的形式化

一、简单自然语句的形式化

二、较复杂自然语句的形式化

第六节 波兰表达式

一、计算机识别括号的过程

合式公式的定义中使用的是联结词的中缀表示,又引入括号以便区分运算次序,这些是人们常用的方法。

计算机识别处理这样表示的公式的方法,需要反复自左向右,自右向左的扫描。如对公式

(P∨(Q∧R))∨(S∧T)

真值的计算过程,开始从左向右扫描,至发现第一个右半括号为止,便返回至最近的左半括号,得部分公式(Q∧R)方可计算真值,随后又向右扫描,至发现第二个右半括号,便返回至第二个左半括号,于是得部分公式(P∨(Q∧R))并计算真值,重复这个过程直至计算结束。

二、波兰式

一般地说,使用联结词构成公式有三种方式,中缀式如P∨Q,前缀式如∨PQ,后缀式如PQ∨

前缀式用于逻辑学是波兰的数理逻辑学家J. Lukasiewicz提出的, 称之为波兰表示式。

如将公式(P∨(Q∧R))∨(S∧T)的这种中辍表示化成波兰式,可由内层括号逐步向外层脱开(或由外层向里逐层脱开)的办法

公式(P∨(Q∧R))∨(S∧T)的波兰式表示:

∨P∧∨QRS

以波兰式表达的公式,由计算机识别处理的过程,当自右向右扫描时可以一次完成,避免了重复扫描。同样后辍表示(逆波兰式)也有同样的优点,而且自左向右一次扫描(看起来更合理)使可识别处理一个公式,很是方便,常为计算机的程序系统所采用,只不过这种表示的公式,人们阅读起来不大习惯。

数学小丛书》

中国的数学科普书籍,不乏一些经典之作,有些更是传世精品,可惜大部分印数不多,基本上不超过5000册,有些经典已不再版,令喜欢数学的人一书难求。

近年非常可喜的一件事是,上世纪六十年代出版的,由数学大师和著名数学家撰写的《数学小丛书》,2002年由科学出版社结集重新出版。

在这套丛书18小分册中,华罗庚一人就写了5本小册子——《从杨辉三角谈起》、《从祖冲之的圆周率谈起》、《从孙子的“神奇妙算”谈起》、《数学归纳法》、《谈谈与蜂房结构有关的数学问题》,篇篇锦绣,字字珠玑!华老的科普文章有一大特色,即创造性。在这种科普小文中,他依然能在一些问题上有自己独创性的思考。比如《数学归纳法》中对李善兰恒等式的证明。 这里面流传着一个故事:50年代初,匈牙利著名数学家Paul Turán (他发现了图论中著名的图兰定理)来华访问,在华罗庚所在的数学研究所做了一个报告,报告中他对来自清末数学家的一项数学发现——李善兰恒等式给出了一个证明。这本是中国人发现的定理,证明却不是中国人。华罗庚作为一个中国数学家,深具民族自尊心,回到住所他冥思苦想,终于在天明前给出了该恒等式的另一证明。天明一早,在他送别Paul Turán时,给了Turán一张纸条,Turán一看,发现那是华罗庚对李善兰恒等式的一个简洁证明,相较于他要用到一些高等数学的证明而言,显得非常的初等而漂亮!不知当时Turán什么反应,我想至少不得不佩服中国人的智慧吧。

传承这种科普文章风格的现在有张景中院士,他的《数学家的眼光》(2007增补版),对微积分的基础做出了非常别致的思考。该书被一些数学家推崇备至,甚至得到陈省身的赏识,陈省身在致张景中的信中,建议该书译成外文出版。张景中的其他数学科普书籍一样精彩,有《帮你学数学》、《漫话数学》、《数学杂谈》、《从根号2谈起》、《新概念几何》、《从数学教育到教育数学》、《数学与哲学》等等,这些书被辑成《院士数学讲座专辑》由中国少年儿童出版社出版。张景中还主编了一套《好玩的数学》,这两套书籍有的十分适合小学初中的学生来看。

华罗庚的这些小册子影响比较大,丘成桐中学时代学习数学时,就得益于华老的这些科普书籍。科学时报《丘成桐:青年学子要培养为学问而学问的态度》中记者描述:因家境贫寒,中学时,丘成桐买不起书,就到图书馆和书店去看书,数学家华罗庚的书让他受益良多:“我们那时的书很少,主要看祖国大陆出版的书,因为大陆的书很便宜,我至少读了15本华罗庚先生的书,如《数论分析》和《数论导论》等,这些书的内容都漂亮极了。也看了陈明哲写的一些小册子。所以,我比课程早一个学期做完所有的习题,听数学课成为一种享受。” 华罗庚的这些小册子及他的一些文章曾被汇编为《华罗庚科普著作选集》,由上海教育出版社在80年代出版。最近被分为两册:《聪明在于勤奋天才在于积累:数学大师华罗庚谈怎样学好数学》和《从孙子的神奇妙算谈起:数学大师华罗庚献给中学生的礼物》,由中国少年儿童出版社重新出版。但有一些篇章没有收录,比如非常精妙的《有限与无穷,离散与连续》。

关于如何学习数学,我个人觉得华罗庚的《聪明在于勤奋天才在于积累》,是不二之选。华罗庚本身就是自学成才,关于如何读书和研究,自有一套独到方法。他的这些文章,虽然带上了一些时代的烙印,但去除那些政治上的东西,个人认为那些文章可称得上数学学习圣经了。同样内容的书换个书名《华罗庚:下棋找高手》,也被中国出版社再版。

数学小丛书里还有吴文俊的《力学在几何中的一些应用》,段学复《对称》,史济怀《平均》,闵嗣鹤《格点和面积》,姜伯驹《一笔画和邮递路线问题》,龚升《从刘徽割圆谈起》,范会国《几种类型的极值问题》,蔡宗熹《等周问题》,涵《多面形的欧拉定理和闭曲面的拓扑分类》,常庚哲、伍润生《复数与几何》,柯召、孙琦《单位分数》,虞言林、虞琪《祖冲之算pi之谜》,冯克勤《费马猜想》。

我注意到,这些传世名篇居然还需要数学天元基金的资助,才得以再版,令人唏嘘。

丘成桐所说的华罗庚的两本书《数论分析》和《数论导论》,我想是记者记错了,应该是《数论导引》和《高等数学引论》吧。丘成桐进入大学前,数学水平就相当高了。大师向来是直接向大师学习!

请推荐一本初中学生读的数学科普读物

∵18个顶点,每个顶点都有4条棱,

∴总棱数为18*4/2=36(条)

根据欧拉公式,

面数=36+2-18=20(个)

∴m+n=20

有疑问,请追问;若满意,请采纳,谢谢!

排列组合的发展历程

《数学之旅》百度网盘下载链接:

链接: 提取码:2D72?

《数学之旅》主要讲述了数学发展史上的100个重大发现,通过这些重大发现展现出数学的发展和进步历程。从史前到中世纪,文艺复兴时期,启蒙时期,一直到现代,描述了各个时期数学的重大事件、奇闻轶事以及著名的数学家。全面的展示数学的魅力,图文并茂,生动而形象,同时启发思考,是一本适用性较强的科普图书。

高中数学的选3-5

虽然数数始于结绳计数的远古时代,由于那时人的智力的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。

同时,人们对数有了深入的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论、数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑和代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。

由此观之,组合学与其他数学分支有着必然的密切联系。它的一些研究内容与方法来自各个分支也应用于各个分支。当然,组合学与其他数学分支一样也有其独特的研究问题与方法,它源于人们对于客观世界中存在的数与形及其关系的发现和认识。例如,中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图中关于幻方的记载,是人们至今所了解的最早发现的组合问题甚或是架构语境学。

于11和12世纪间,贾宪就发现了二项式系数,杨辉将它整理记载在他的《续古抉奇法》一书中。这就是中国通常称的杨辉三角。事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数。13世纪波斯的哲学家曾讲授过此类三角。而在西方,布莱士·帕斯卡发现这个三角形是在17世纪中期。这个三角形在其他数学分支的应用也是屡见不鲜的。同时,帕斯卡和费马均发现了许多与概率论有关的经典组合学的结果。因此,西方人认为组合学开始于17世纪。组合学一词是德国数学家莱布尼茨在数学的意义下首次应用。也许,在那时他已经预感到了其将来的蓬勃发展。然而只有到了18世纪欧拉所处时代,组合学才可以说开始了作为一门科学的发展,因为那时,他解决了柯尼斯堡七桥问题,发现了多面体(首先是凸多面体,即平面图的情形)的顶点数、边数和面数之间的简单关系,被人们称为欧拉公式。甚至,当今人们所称的哈密顿圈的首创者也应该是欧拉。这些不但使欧拉成为组合学的一个重要组成部分——图论而且也成为占据现代数学舞台中心的拓扑学发展的先驱。同时,他对导致当今组合学中的另一个重要组成部分——组合设计中的拉丁方的研究所提出的猜想,人们称为欧拉猜想,直到1959年才得到完全的解决。

于19世纪初,高斯提出的组合系数,今称高斯系数,在经典组合学中也占有重要地位。同时,他还研究过平面上的闭曲线的相交问题,由此所提出的猜想称为高斯猜想,它直到20世纪才得到解决。这个问题不仅贡献于拓扑学,而且也贡献于组合学中图论的发展。同在19世纪,由乔治·布尔发现且被当今人们称为布尔代数的分支已经成为组合学中序理论的基石。当然,在这一时期,人们还研究其他许多组合问题,它们中的大多数是娱乐性的。

20世纪初期,庞加莱联系多面体问题发展了组合学的概念与方法,导致了近代拓扑学从组合拓扑学到代数拓扑学的发展。于20世纪的中、后期,组合学发展之迅速也许是人们意想不到的。首先,于1920年费希尔(Fisher,R.A.)和耶茨(Yates,F.)发展了实验设计的统计理论,其结果导致后来的信息论,特别是编码理论的形成与发展.于1939年,坎托罗维奇(Канторович,Л.В.)发现了线性规划问题并提出解乘数法。于1947年丹齐克(Dantzig,G.B.)给出了一般的线性规划模型和理论,他所创立的单纯形方法奠定了这一理论的基础,阐明了其解集的组合结构。直到今天它仍然是应用得最广泛的数学方法之一。这些又导致以网络流为代表的运筹学中的一系列问题的形成与发展。开拓了人们目前称为组合最优化的一个组合学的新分支。在20世纪50年代,中国也发现并解决了一类称为运输问题的线性规划的图上作业法,它与一般的网络流理论确有异曲同工之妙。在此基础上又出现了国际上通称的中国邮递员问题。

另一方面,自1940年以来,生于英国的塔特(Tutte,W.T.)在解决拼方问题中取得了一系列有关图论的结果,这些不仅开辟了现今图论发展的许多新研究领域,而且对于20世纪30年代,惠特尼(Whitney,H.)提出的拟阵论以及人们称之为组合几何的发展都起到了核心的推动作用。应该特别提到的是在这一时期,随着电子技术和计算机科学的发展愈来愈显示出组合学的潜在力量。同时,也为组合学的发展提出了许多新的研究课题。例如,以大规模和超大规模集成电路设计为中心的计算机辅助设计提出了层出不穷的问题。其中一些问题的研究与发展正在形成一种新的几何,人们称之为组合计算几何。关于算法复杂性的究,自1961年库克(Cook,S.A.)提出NP完全性理论以来,已经将这一思想渗透到组合学的各个分支以至数学和计算机科学中的一些分支。

近20年来,用组合学中的方法已经解决了一些即使在整个数学领域也是具有挑战性的难题。例如,范·德·瓦尔登(Van der Waerden,B.L.)于1926年提出的关于双随机矩阵积和式猜想的证明;希伍德(Heawood,P.J.)于1890年提出的曲面地图着色猜想的解决;著名的四色定理的计算机验证和扭结问题的新组合不变量发现等。在数学中已经或正在形成着诸如组合拓扑、组合几何、组合数论、组合矩阵论、组合群论等与组合学密切相关的交叉学科。此外,组合学也正在渗透到其他自然科学以及社会科学的各个方面,例如,物理学、力学、化学、生物学、遗传学、心理学以及经济学、管理学甚至政治学等。

根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化.由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论.然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。  在中国当代的数学家中,较早地在组合学中的不同方面作出过贡献的有 华罗庚、 吴文俊、 柯召、 万哲先、 张里千和 陆家羲等.其中,万哲先和他领导的研究组在有限几何方面的系统工作不仅对于组合设计而且对于图的对称性的研究都有影响.陆家羲的有关不交斯坦纳三元系大集的一系列的文章不仅解决了组合设计方面的一个难题,而且他所创立的方法对于其后的研究者也产生了和正产生着积极的作用。

1772年,法国数学家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n个不同的元素中每次取p个的排列数。

瑞士数学家欧拉(Euler, L.)则于1771年以 及于1778年以 表示由n个不同元素中每次取出p个元素的组合数。

1830年,英国数学家皮科克(Peacock, G)引入符号Cr表示n个元素中每次取r个的组合数。

1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。按此法,nPn便相当于n!。

1872年,德国数学家埃汀肖森(Ettingshausen,B. A. von)引入了符号(np)来表示同样的意义,这组合符号(Signs of Combinations)一直沿用至今。

1880年,鲍茨(Potts , R.)以nCr及nPr分别表示由n个元素取出r个的组合数与排列数。

1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同样的意义,他还用Rnr表示可重复的组合数。

1899年,英国数学家、物理学家克里斯托尔(Chrystal,G.)以nPr,nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。

1904年,德国数学家内托(Netto, E.)为一本百科辞典所写的辞条中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,后者亦也用符号(n r)表示。这些符号也一直用到现代。

此外,在八卦中,亦运用到了排列组合。

欧拉公式与闭曲面分类 复习已学过的变换,并使用它们对平面图形分类 复移、旋转、平面运动、反射、全等、位似、伸缩、相似变换,以及对平面图形分类。 在上述变换下,探索什么几何性质是不变的。 体会变换的一些基本特征:1-1对应,连续。 欧拉公式 通过探索发现欧拉公式的过程,理解欧拉公式。 理解欧拉公式的拓扑证明。 使用欧拉公式解决一些问题(如探索正多面体的个数)。 探索非欧拉多面形的面数、棱数、顶点数的关系。 理解曲面三角剖分的概念。 会对一些曲面进行三角剖分,并能计算它们的欧拉示性数。 了解拓扑变换的直观含义。 知道一些拓扑不变量,并能用它们对一些曲线、闭曲面进行分类,了解一些曲线、闭曲面的分类结果。 了解拓扑思想的一些应用(如平面布线问题、一笔画问题、布劳威尔不动点定理与经济稳定点问题、四色问题)。